Note

Simple synthesis of [1-¹¹C]acetate

D. Le Bars*, M. Malleval, F. Bonnefoi and C. Tourvieille CERMEP - Imagerie du Vivant, 59 Bd PINEL, 69003 Lyon, France

Summary

 $[1-^{11}C]$ Acetate is prepared by carboxylation of a Grignard reagent, CH₃MgBr, on a simple polyethylene loop with cyclotron-produced [¹¹C]carbon dioxide, followed by hydrolysis and purification on solid-phase extraction cartridges. Copyright © 2006 John Wiley & Sons, Ltd.

Key Words: acetate; loop synthesis; solid-phase extraction; carbon 11

Introduction

 $[1-{}^{11}C]$ Acetate is a well-known tracer entering the Krebs cycle, reflecting cell oxidative metabolism. Besides cardiology, a new interest is arising for $[1-{}^{11}C]$ acetate in oncology mainly for the study of prostate and liver tumors.

 $[1-^{11}C]$ Acetate is prepared by carboxylation of a Grignard reagent, CH₃MgBr or CH₃MgCl, with cyclotron-produced $[^{11}C]$ carbon dioxide, followed by hydrolysis and purification. The original synthesis¹ requires solvent extraction, a difficult step for automation; simplified methods have been reported to avoid phase separation, mostly making use of SPE (solid-phase extraction) techniques.^{2–5} New techniques for ¹¹C-carboxylation, based on immobilization or containment of Grignard reagent on the inner surface of various tubing, have greatly improved the production of $[1-^{11}C]$ acetate⁶ and have been applied to other compounds such as WAY100635⁷ and other syntheses (¹¹C-methylations⁸).

For a new automated system, we aimed at a combination of these techniques to achieve 'the simplest system': loop method for Grignard carboxylation, based on results from Davenport *et al.*⁶ and SPE techniques for purification, as reported for $[1-^{11}C]$ acetate by Kruijer *et al.*³ and Roeda *et al.*⁴

Copyright © 2006 John Wiley & Sons, Ltd.

^{*}Correspondence to: D. Le Bars, CERMEP - Imagerie du Vivant, 59 Blvd PINEL, 69003 Lyon, France. E-mail: lebars@univ-lyon1.fr

264

Experimental

Materials and methods

Reagents: Methyl magnesium bromide 3 M solution in diethyl ether, THF and other chemicals were obtained from Sigma Aldrich Fluka. Sodium bicarbonate for IV perfusion, NaHCO₃ 1.4% (0.16 mmol ml⁻¹), is obtained from Aguettant.

Acetate carrier solution is $1 \text{ mmol } \text{I}^{-1}$. The loop was made from 1 m of 3.20 mm OD PE tubing (1.6 mm ID), washed before each run with 10 ml water, 10 ml THF and dried with 100 ml min⁻¹ nitrogen for 20–30 min. The solidphase cartridges were Alltech Maxi-clean IC-H, IC-OH and IC-Ag, 0.5 ml cartridges. H⁺/Ag column was obtained by mixing the contents of two of each SPE cartridges in a 2 ml syringe, equipped with rubber cap. Carbon 11 was obtained as [¹¹C]carbon dioxide via the ¹⁴N(p, α)¹¹C reaction on N5.6 nitrogen with 0.5% N5.6 oxygen, with 18 MeV protons (IBA Cyclone 18/9 cyclotron). ¹¹CO₂ was concentrated in a stainless steel loop/cryogenic trap (liquid nitrogen).

Analytical HPLC was performed on a Beckman Gold system, with a Raytest GABI for radioactivity detection, or a Beckman RI detector on an Aminex HP-87H (organic acids) 7.8×300 mm column eluted with 0.004 M H₂SO₄ in water at 0.6 ml min⁻¹, at room temperature. Radiochemical yields were determined with a Capintec CRC-120 dose calibrator.

$[1-^{11}C]$ Acetate production

The loop is loaded under nitrogen through a 3-way stopcock with $100 \,\mu$ l of CH₃MgBr solution, freshly prepared from 1 ml of methyl magnesium bromide 3 M solution in diethyl ether diluted with 1 ml of distilled THF. A 5 ml min⁻¹ nitrogen flow is then established through the system, and cyclotron-produced ¹¹CO₂ is recovered from the target and released from the cryogenic trap through the loop less than 2 min after Grignard introduction.

Further, 2 ml of 1 mM carrier acetate solution is pushed through the loop and passed on the combination of SPE cartridges (mixed H^+/Ag , OH^-). Then 5 ml water and 10 ml air are used to rinse the loop and the cartridges, and then the anionic IC-OH SPE cartridge is washed with 10 ml of water before elution with 5 ml 0.9% NaCl solution in a vial containing 0.5 ml of 2 N HCl. A 200 ml min⁻¹ nitrogen flow (from an independent line) is established for 2 min for [¹¹C]carbonate elimination.

The injectable [¹¹C]acetate solution is obtained after neutralization with 6 ml NaHCO₃ 1.4%, filtration through 0.22 μ m millipore filter, and dilution with sterile isotonic saline (Figure 1).

Results and discussion

This simple setup produces $[1^{-11}C]$ acetate in good yields (60–70% decay corrected to EOB). The amount of Grignard in this synthesis is similar to the amounts used by Kruijer *et al.* (0.3 mmol)³ or Roeda *et al.* (0.1 mmol),⁴ but higher than the amount (0.03 mmol) reported by Davenport *et al.* in their system based on a smaller teflon loop.⁶ As shown by HPLC (Figure 2), by-products such as $[^{11}C]$ acetone and $[^{11}C]$ *t*-butanol are present in the waste fraction, with a minor amount of $[1^{-11}C]$ acetate. SPE techniques afford an easy

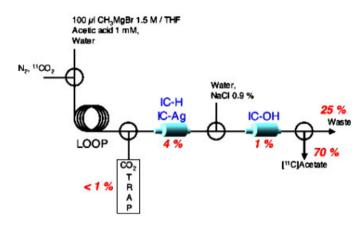


Figure 1. Synthesis apparatus and radioactivity distribution

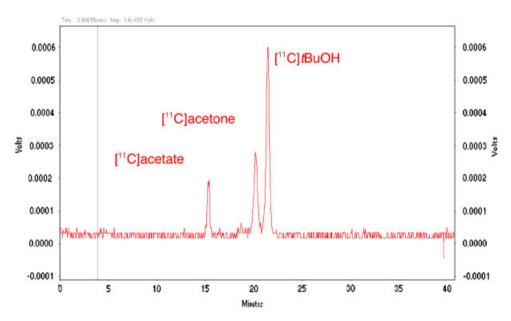


Figure 2. HPLC radiochromatogram of waste fraction

Copyright © 2006 John Wiley & Sons, Ltd.

J Label Compd Radiopharm 2006; 49: 263-267

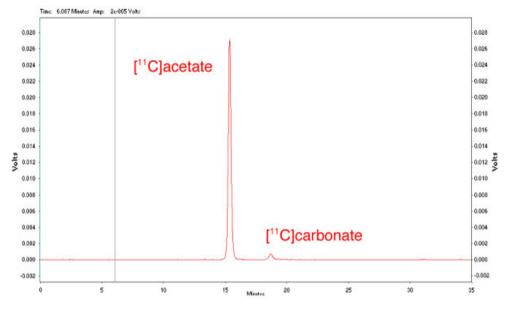


Figure 3. HPLC radiochromatogram of eluted fraction (NaCl 0.9%)

purification step, carrier acetate is added to ensure efficient and reproducible trapping and elution from the anion exchange column as shown by Kruijer *et al.*³ In contrast to this similar purification process, we found that physiologic saline was sufficient to elute acetate from the anionic column. [¹¹C]Carbonate amounted to 5–10% of radioactivity (Figure 3) and had to be removed with nitrogen flow in acidic solution. Analytical HPLC on Aminex HP 87-H reported the excellent chemical and radiochemical purities; HPLC analyses with refractive index detection did not show the unidentified contaminant reported by the Orsay group, with a different ¹¹CO₂ production system.⁴ During the setup phase of the synthesis, preparative HPLC has been investigated: the carboxylation of the Grignard reagent can take place in a stainless-steel HPLC loop, and the reaction mixture can be directly injected on a C18 column to achieve HPLC purification (see Davenport *et al.*,⁶ Kihlberg *et al.*⁹ for HPLC use); this approach opens the possibility of acetate radiosynthesis in automated 'loop systems'.

Conclusion

Radiosynthesis has been automated with a programmable logic controller (PLC), a motor-driven syringe and electrovalves; the reaction is processed in less than 12 min and is afforded in a typical run of around 500 mCi, 18.5 GBq EOS-injectable [1-¹¹C]acetate from an 18 μ Ah 36 μ A beam, in low specific radioactivity due to carrier-added purification, with excellent radiochemical and chemical purities.

Acknowledgements

Thanks to V.W. Pike, H. Tochon-Danguy and V. Tadino for fruitful discussions.

References

- 1. Pike VW, Horlock PL, Brown C, Clark JC. Appl Radiat Isotop 1984; 35: 623-627.
- 2. Iwata R, Ido T, Tada M. Appl Radiat Isotop 1995; 46: 117-121.
- 3. Kruijer P, Ter Linden T, Mooij R, Visser F, Herscheid DM. *Appl Radiat Isotop* 1995; **46**: 317–321.
- 4. Roeda D, Dolle F, Crouzel C. Appl Radiat Isotop 2002; 57: 857-860.
- 5. Moerlein SM, Gaehle GG, Welch MJ. Nucl Med Biol 2002; 29: 613-621.
- 6. Davenport RJ, Dowset K, Pike VW. Appl Radiat Isotop 1997; 48: 1117-1120.
- McCarron JA, Turton DR, Pike VW, Poole KG. J Label Compd Radiopharm 1996; 38: 941–953.
- 8. Wilson AA, Garcia A, Jin L, Houle S. Nucl Med Biol 2000; 27: 529-532.
- 9. Kihlberg T, Valind S, Langström B. Nucl Med Biol 1994; 21: 1067-1072.